Spacelike Singularities and Hidden Symmetries of Gravity

نویسندگان

  • Marc Henneaux
  • Daniel Persson
  • Philippe Spindel
چکیده

We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries , Singularities and the De - Emergence of Space

Recent work has revealed intriguing connections between a Belinsky–Khalatnikov– Lifshitz-type analysis of spacelike singularities in general relativity and certain infinitedimensional Lie algebras, particularly the “maximally extended” hyperbolic Kac–Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(–time) at ...

متن کامل

ar X iv : 0 70 5 . 26 43 v 1 [ he p - th ] 1 8 M ay 2 00 7 Symmetries , Singularities and the De - emergence of Space

Recent work has revealed intriguing connections between a Belinsky-Khalatnikov-Lifshitz-type analysis of spacelike singularities in General Relativity and certain infinite dimensional Lie algebras, and in particular the ‘maximally extended’ hyperbolic Kac–Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(-time...

متن کامل

Black holes of a general two-dimensional dilaton gravity theory.

A general dilaton gravity theory in 1+1 spacetime dimensions with a cosmological constant λ and a new dimensionless parameter ω, contains as special cases the constant curvature theory of Teitelboim and Jackiw, the theory equivalent to vacuum planar General Relativity, the first order string theory, and a two-dimensional purely geometrical theory. The equations of this general two-dimensional t...

متن کامل

Bohmian Mechanics at Space-time Singularities. Ii. Spacelike Singularities

We develop an extension of Bohmian mechanics by defining Bohm-like tra-jectories for quantum particles in a curved background space-time containing a spacelike singularity. As an example of such a metric we use the Schwarzschild metric, which contains two spacelike singularities, one in the past and one in the future. Since the particle world lines are everywhere timelike or lightlike, particle...

متن کامل

Cosmological Singularities and a Conjectured Gravity/coset Correspondence

We review the recently discovered connection between the Belinsky-Khalatnikov-Lifshitz-like “chaotic” structure of generic cosmological singularities in eleven-dimensional supergravity and the “last” hyperbolic Kac-Moody algebra E10. This intriguing connection suggests the existence of a hidden “correspondence” between supergravity (or even M-theory) and null geodesic motion on the infinite-dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2008